6 research outputs found

    Microfluidic technologies for genomic interrogation of mycobacterium tuberculosis clinical isolates using the polymerase chain reaction (PCR) and high resolution melting analysis (HRMA).

    Get PDF
    Master of Medical Science in Medical Microbiology. University of KwaZulu-Natal, Medical School 2015.Background: A number of Mycobacterium tuberculosis (Mtb) genes have been shown to be under positive selection pressure in the presence of anti-TB therapy. This results in the selection of drug resistant phenotypes associated with genetic changes—which can be point mutations, deletions and/or insertions. Some mutations from multiple genes have been documented to be associated with reduced susceptibility to anti-TB drugs such as rifampicin, ethambutol, carpreomycin and fluoroquinolones. The list is continuously updated as new mutations are discovered and validated. In principle therefore, there is an urgent need to design robust molecular diagnostics and more efficacious therapeutic strategies that are able to indicate diverse genetic mechanisms behind drug resistance in individual isolates Materials and Methods: We used the LightForge system we developed at K-RITH. This LightForge system is a fluorescence detection based, highly scalable microfluidic platform. It interrogates Mycobacterium tuberculosis strains using Real-Time PCR and High Resolution Melt Analysis (HRMA) on a chip. Results and Discussion: We have used this LightForge system to identify clinical Mtb strains resistant to rifampicin—a frontline drug used to treat tuberculosis, relative to a susceptible strain H37RV, based on mutations in the rpoB gene. This system has the potential to contribute towards a low-cost solution to diagnosis of multidrug resistant tuberculosis—a current critical global healthcare challenge. The interrogation of clinical Mtb isolates—including R35, KZN 605 and Tkk 01-062—using the LightForge system has detected mutations linked to rifampicin resistance including single nucleotide polymorphisms (SNPs) in a congruous manner with commercial systems. Conclusions: In preparation for diagnosis of clinical samples, this LightForge approach is now being expanded to incorporate detection of genetic markers linked with resistance to other TB drugs that include fluoroquinolones and isoniazid based on mutations in gyrA, katG and Mab-inhA regions of the Mtb genome. The scalability of LightForge can also be harnessed to conduct digital PCR (dPCR), a critical tool for detecting genetic heterogeneity in Mtb

    Subtle Longitudinal Alterations in Env Sequence Potentiate Differences in Sensitivity to Broadly Neutralizing Antibodies following Acute HIV-1 Subtype C Infection

    Get PDF
    Broadly neutralizing antibodies (bNAbs) for HIV-1 prevention or cure strategies must inhibit transmitted/founder and reservoir viruses. Establishing sensitivity of circulating viruses to bNAbs and genetic patterns affecting neutralization variability may guide rational bNAbs selection for clinical development. We analyzed 326 single env genomes from nine individuals followed longitudinally following acute HIV-1 infection, with samples collected at ~1 week after the first detection of plasma viremia; 300 to 1,709 days postinfection but prior to initiating antiretroviral therapy (ART) (median = 724 days); and ~1 year post ART initiation. Sequences were assessed for phylogenetic relatedness, potential N- and O-linked glycosylation, and variable loop lengths (V1 to V5). A total of 43 env amplicons (median = 3 per patient per time point) were cloned into an expression vector and the TZM-bl assay was used to assess the neutralization profiles of 15 bNAbs targeting the CD4 binding site, V1/V2 region, V3 supersite, MPER, gp120/gp41 interface, and fusion peptide. At 1 μg/mL, the neutralization breadths were as follows: VRC07-LS and N6.LS (100%), VRC01 (86%), PGT151 (81%), 10-1074 and PGT121 (80%), and less than 70% for 10E8, 3BNC117, CAP256.VRC26, 4E10, PGDM1400, and N123-VRC34.01. Features associated with low sensitivity to V1/V2 and V3 bNAbs were higher potential glycosylation sites and/or relatively longer V1 and V4 domains, including known "signature" mutations. The study shows significant variability in the breadth and potency of bNAbs against circulating HIV-1 subtype C envelopes. VRC07-LS, N6.LS, VRC01, PGT151, 10-1074, and PGT121 display broad activity against subtype C variants, and major determinants of sensitivity to most bNAbs were within the V1/V4 domains. IMPORTANCE Broadly neutralizing antibodies (bNAbs) have potential clinical utility in HIV-1 prevention and cure strategies. However, bNAbs target diverse epitopes on the HIV-1 envelope and the virus may evolve to evade immune responses. It is therefore important to identify antibodies with broad activity in high prevalence settings, as well as the genetic patterns that may lead to neutralization escape. We investigated 15 bNAbs with diverse biophysical properties that target six epitopes of the HIV-1 Env glycoprotein for their ability to inhibit viruses that initiated infection, viruses circulating in plasma at chronic infection before antiretroviral treatment (ART), or viruses that were archived in the reservoir during ART in subtype C infected individuals in South Africa, a high burden country. We identify the antibodies most likely to be effective for clinical use in this setting and describe mutational patterns associated with neutralization escape from these antibodies

    Cinnamoyl-Oxaborole Amides: Synthesis and Their in Vitro Biological Activity.

    Get PDF
    Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 ÎĽM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to >125 ÎĽM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens

    Light Forge: A Microfluidic DNA Melting-based Tuberculosis Test

    Get PDF
    BACKGROUND: There is a well-documented lack of rapid, low-cost tuberculosis (TB) drug resistance diagnostics in low-income settings across the globe. It is these areas that are plagued with a disproportionately high disease burden and in greatest need of these diagnostics. METHODS: In this study, we compared the performance of Light Forge, a microfluidic high-resolution melting analysis (HRMA) prototype for rapid low-cost detection of TB drug resistance with a commercial HRMA device, a predictive nearest-neighbor thermodynamic model, DNA sequencing, and phenotypic drug susceptibility testing (DST). The initial development and assessment of the Light Forge assay was performed with 7 phenotypically drug resistant strains of Mycobacterium tuberculosis (M.tb) that had their rpoB gene subsequently sequenced to confirm resistance to Rifampin. These isolates of M.tb were then compared against a drug-susceptible standard, H37Rv. Seven strains of M.tb were isolated from clinical specimens and individually analyzed to characterize the unique melting profile of each strain. RESULTS: Light Forge was able to detect drug-resistance linked mutations with 100% concordance to the sequencing, phenotypic DST and the nearest neighbor thermodynamic model. Researchers were then blinded to the resistance profile of the seven M.tb strains. In this experiment, Light Forge correctly classified 7 out of 9 strains as either drug resistant or drug susceptible. CONCLUSIONS: Light Forge represents a promising prototype for a fast, low-cost diagnostic alternative for detection of drug resistant strains of TB in resource constrained settings

    Cinnamoyl- Oxaborole Amides: Synthesis and Their in Vitro Biological Activity

    No full text
    Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 ÎĽM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to \u3e125 ÎĽM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens

    Cinnamoyl- Oxaborole Amides: Synthesis and Their in Vitro Biological Activity

    Get PDF
    Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 ÎĽM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to \u3e125 ÎĽM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens
    corecore